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Abstract--A neural network learning procedure has been applied to the classification ~/sonar returns [kom two 
undersea targets, a metal cylinder and a similarly shaped rock. Networks with an intermediate layer ~/ hidden 
processing units achieved a classification accuracy as high as 100% on a training set of l04 returns. These net~orks 
correctly classified up to 90.4% of 104 test returns not contained in the training set. This perfi~rmance was better 
than that of a nearest neighbor classifier, which was 82.7%. and was close to that of an optimal Bayes classifie~ 
Specific signal features extracted by hidden units in a trained network were identified and related to coding schemes 
in the pattern of connection strengths between the input and the hidden units. Network perlbrmance and class[/~cation 
strategy was comparable to that of trained human listeners. 
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INTRODUCTION 

New learning algorithms for multilayered neural net- 
works are potential alternatives to existing pattern rec- 
ognition and signal processing techniques (Lapedes & 
Farber, 1987; Lippman, 1987; Watrous & Shastri, 
1987). The application of neural networks to signal 
classification problems requires far less restrictive as- 
sumptions about the structure of the input signal. In 
addition, the inherent parallelism of these networks al- 
lows very rapid parallel search and best-match com- 
putations, alleviating much of the computational over- 
head incurred when applying traditional non-para- 
metric techniques to signal interpretation problems. 
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However, these new techniques are not yet fully char- 
acterized and it would be valuable to compare their 
performance with that of existing techniques and hu- 
man performance on a well-defined problem. 

In the present study, neural networks were applied 
to a sonar target classification problem. Networks were 
trained to classify sonar returns from an undersea metal 
cylinder and a cylindrically shaped rock of comparable 
size. Some of the performance data were reported else- 
where (Gorman & Sejnowski, 1987). In this paper, we 
present additional experimental data, a comparison of 
network classification performance to that of traditional 
pattern recognition techniques, and an analysis of the 
networks' classification strategy. We also compare the 
features extracted by the network's hidden units to per- 
ceptual cues used by trained human listeners. 

The following section discusses the network archi- 
tecture and the learning algorithm used in the present 
study. The preprocessing performed on the sonar re- 
turns for presentation to the networks is described in 
the second section. The third and fourth sections de- 
scribe the classification experiments and present ex- 
perimental results. The fifth section discusses a tech- 
nique for analyzing network weight patterns and its 
application to a network trained to classify the two 
sonar targets. Finally, a comparison is drawn between 
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the network classifier and human listeners trained to 
discriminate the same two classes of  sonar returns. The 
paper concludes with a brief discussion of the results. 

N E T W O R K  A R C H I T E C T U R E  AND 
LEARNING A L G O R I T H M  

The networks used in the present study were feed- 
forward and possessed two or three layers of processing 
units with continuous-valued outputs. The output of 
the ith unit was obtained by calculating the activation 
level, E ,  

Ei = Z wijpj + bi (1) 
# 

where Wsj is the weight from the j th to the ith unit, pj 
is the output of unit j, and b, is the bias of  the ith unit. 
A sigmoidal transformation was then applied to the 
activation level to obtain the ith unit's state or output 

Pi, 

1 
p,=  P(E/) - 1 + e -~E' (2) 

where /3 was a constant that determined the slope of 
the sigmoid at E~ = 0 (fl = 1.0 for these experiments). 
The input layer was made up of 60 units each clamped 
to an amplitude value of the signal to be classified. The 
number  of output units was arbitrarily set at two. The 
states of the output units determined the class of the 
signal: (1,0) represented a return from the metal cyl- 
inder, and (0,1) represented a return from the rock. 
Experiments were conducted using networks with two 

NETWORK ARCHITECTURE 

OUTPUT UNITS 
(1,0) CYLINDER 
(0, 1) ROCK 

/ 1 \  
HIDDEN UNITS G C . ~ 2 ~  

INPUT UNITS 

FIGURE 1. Schematic diagram of the network. The bottom layer 
has 60 processing units with their states "clamped" to the 
amplitude of the pre-processed sonar signal, shown in analog 
form below the units. The two output units at the top represent 
the two sonar targets to be identified. The layer of hidden units 
between the input and output layers allows the network to ex- 
tract high-order signal features. The connections between the 
layers of units are represented by arrows. 

layers and networks with a hidden layer. A schematic 
of the three-layered architecture is shown in Figure I. 

The back-propagation learning algorithm (Rumel- 
hart, Hinton, & Williams, 1986) was used to train the 
network. The algorithm calculated the gradient of the 
error with respect to each weight in the network and 
incrementally adjusted the weights to minimize the 
global error (see Gorman & Sejnowski, 1987 and Ro- 
senberg & Sejnowski, 1987 for more details). The error 
measured at each output unit was back-propagated only 
when the difference between the measured and desired 
states of the output unit was greater than a margin of 
0.2. The weights of the network were initialized to small 
random values uniformly distributed between -0 .3  and 
0.3. This was done to prevent the hidden units from 
acquiring identical weights during training. In all ex- 
periments, the learning rate parameter, ~, was set to 2.0 
and momentum,  a, was 0.0, as defined in Rosenberg 
and Sejnowski (1987). The networks were simulated 
on a Ridge 32 computer (comparable to a VAX 780 
FPA in computational power) using a simulator written 
in the C programming language and developed at The 
Johns Hopkins University. 

SONAR DATA AND SIGNAL 
REPRESENTATION 

The data used for the network experiments were 
sonar returns collected from a metal cylinder and a 
cylindrically shaped rock positioned on a sandy ocean 
floor. Both targets were approximately 5 ft in length 
and the impinging pulse was a wide-band linear FM 
chirp (ka = 55.6). Returns were collected at a range of 
10 meters and obtained from the cylinder at aspect an- 
gles spanning 90 ° and from the rock at aspect angles 
spanning 180 °. 

A set of 208 returns (111 cylinder returns and 97 
rock returns) were selected from a total set of  1200 
returns on the basis of the strength of the specular return 
(4.0 to 15.0 dB signal-to-noise ratio). An average of 5 
returns were selected from each aspect angle. Figure 2 
shows a sample return from the rock and the cylinder. 
The preprocessing of the raw signal was based on ex- 
periments with human listeners (Gorman & Sawatari, 
1987). The temporal signal was first filtered and spectral 
information was extracted and used to represent the 
signal on the input layer. 

The preprocessing used to obtain the spectral en- 
velope is indicated schematically in Figure 3 where a 
set of sampling apertures (Figure 3a) are superimposed 
over the 2D display of a short-term Fourier Transform 
spectrogram of the sonar return. As shown in Figure 
3b and c, the spectral envelope, P,0,v0(~), was obtained 
by integrating over each aperture. The spectral envelope 
was composed of 60 spectral samples, normalized to 
take on values between 0.0 and 1.0. (See Gorman  & 
Sejnowski, 1987 for a detailed treatment of  the pre- 
processing). 
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FIGURE 2. Amplitude displays of a typical return from the cylinder and the rock as a function of time. 

CLASSIFICATION EXPERIMENTS 

Parallel networks were trained to classify returns 
from the rock and the cylinder according to the pro- 
cedure outlined above. For each experiment, a given 
network was presented with a sequence of training sig- 
nals during which weight values were changed to im- 
prove performance. The training set was presented a 
total of 300 times. The trained network was then pre- 
sented with a set of test returns excluded from the 
training set to determine its ability to generalize. The 
network's performance on both the training and test 
set was specified as the percent correct classification. 
Each experiment with a given network was repeated 
10 times with different initial weight values to average 
over variations in performance due to initial conditions. 

Two series of experiments were conducted: an aspect- 
angle independent series for which training sets were 
selected at random from the total set of 208 returns, 
and an aspect-angle dependent series using training and 
testing sets designed to contain examples from all 
available aspect-angles. This permitted us to compare 
the test-set performance of trained networks in these 
two series to determine whether aspect-angle dependent 
signal features were important for accurate classfication. 

lected. The 192 returns remaining after each test set 
selection served as the corresponding training set. In 
this way, each signal in the total set of 208 served as a 
testing signal for one of the experiments. A given net- 
work was trained and tested on each training/testing 
set pair and the average performance over the 13 test 
sets provided a measure of the probability of correct 
classification (Toussaint, 1974). This measure would 
be accurate as long as no important classification fea- 
tures were excluded from any of the training sets; oth- 
erwise, the measure would be lower than the expected 
performance. Network performance on each of the 13 
training/testing set pairs was computed as the average 
performance of 10 separately trained networks. 

Aspect-Angle  Dependent Series  

For the aspect-angle dependent series, the training 
and testing sets were designed to ensure that both sets 
contained returns from each target aspect angle with 
representative frequency. Each set consisted of 104 re- 
turns. The networks' performance was again taken as 
the average performance over ten separately trained 
networks. 

Aspect-Angle  Independent Series  

For the aspect-angle independent series, 13 disjoint 
test sets comprised of 16 returns were randomly se- 

Number of Hidden Units 

The number of hidden units required to accurately 
classify the returns was determined empirically. Both 
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FIGURE 3. The preprocessing of the sonar signal produces a sampled spectral envelope normalized to vary from 0.0 to 1.0 for 
input to the network. (a) The set of sampling apertures offset temporally to correspond to the slope of the FM chirp, (b) sampling 
apertures superimposed over the 2D display of the short-term Fourier transform, (c) the spectral envelope obtained by integrating 
over each sampling aperture. 

of the above series of experiments were repeated using 
networks with 0, 2, 3, 6, 12, and 24 hidden units. 

Nearest Neighbor Classification 
The performance of our network classifier was com- 

pared with a nearest neighbor classifier which served 
as a performance benchmark. A nearest neighbor rule 
classifies an unknown signal in the category of its near- 
est neighbor according to a pre-specified measure of  
similarity or distance. We used a Euclidean metric so 
that the distance, dk~, between the /cth and lth signal 
was defined as 

dkl = [ ~ (X<ik) -- X(il))2] (3) 

where N is the number of spectral envelope sample 
points, and x<i k) is the value of the ith sample point for 
the kth signal. 

The probability of correct classification was based 
on computing the nearest neighbor to each signal in 
the database. If  the two nearest neighbor signals were 

returns from the same target the classifier was given a 
score of 1.0. If the two signals were returns from dif- 
ferent targets the classifier was given a score of 0.0. The 
probability of  correct classification is given by 

P(c) : ~ Z sk (4) 
k : l  

where M is the number  of returns and Sk is the clas- 
sification score of the kth signal. The probability of 
correct classification of the nearest neighbor classifier 
can be used to obtain upper and lower bounds on the 
Bayes probability of correct classification as the number 
of sample signals increases (Cover & Hart, 1967). 
Hence, the performance of the nearest neighbor clas- 
sifier provides a reasonably good benchmark for rating 
the performance of a network classifier. 

EXPERIMENTAL RESULTS 

Aspect-Angle Independent Series 

The aspect-angle independent series conducted using 
randomly selected training sets consisted of 130 trials 
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TABLE 1 
Aspect-Angle Independent Series 

Average Standard Average Standard 
Performance Deviation Performance Deviation 

Number of on Training Sets on Training Sets on Testing Sets on Testing Sets 
Hidden Units (%) (%) (%) (%) 

0 89.4 2.1 77.1 8.3 
2 96.5 0.7 81.9 6.2 
3 98.8 0.4 82.0 7.3 
6 99.7 0.2 83.5 5.6 

12 99.8 0.1 84.7 5.7 
24 99.8 0.1 84.5 5.7 

Summary of the results of the aspect-angle independent series of experiments with randomly selected training sets. The standard 
deviation shown is across training and testing sets, and was obtained by measuring the variation of performance values averaged over 
ten trials differing in initial conditions. 

for each network with a given number of hidden units. 
The overall performance of each network was taken to 
be the average over a set of 13 values obtained from 
experiments with different training sets. These 13 values 
were in turn averages over 10 trials differing in initial 
conditions. The results of this series of experiments are 
summarized in Table I. Figure 4 shows the overall av- 
erage learning curves for three of the networks trained 
on randomly selected returns. 

The best average performance on the training set 
was achieved by a network with 24 hidden units 
(99.8% correct classification accuracy). The network 
with no hidden units, essentially an Adaline (Widrow 
& Hoff, 1960), could classify the training set with an 
average accuracy of 89.4%, indicating that, on average, 
the hidden layer improved the networks' performance 
by at least 10%. 

The average performance on the test set differed by 
as much as 7.6% between two- and three-layered net- 
works. The average performance on the training and 
testing sets improved with the number  of  hidden units 
up to 12 hidden units. Increasing the number of hidden 
units from 12 to 24 produced no further improvement. 
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FIGURE 4. Network learning curves for the aspect-angle in- 
dependent series of experiments using randomly chosen 
training sets, Each curve represents an average of 130 learning 
trials for a network with the specified number of hidden units. 

The standard deviation reported is the variation over 
13 average performance values. Each average perfor- 
mance value was obtained over the ten trials differing 
in initial conditions. Thus, this variation is primarily 
due to training set selection. 

The amount of variation in performance, as reported 
in Table 1, suggests that the increase in performance 
with the size of  the hidden layer is not very significant. 
However, the way that the performance of each network 
varied as function of test set was correlated. This can 
be seen in Figure 5 which shows a plot of the perfor- 
mance of four of  the networks tested as a function of 
the test set. The performance of the network generally 
increased as a function of the size of  the hidden layer, 
particularly on test sets for which performance was low. 

Aspect-Angle Dependent Series 

The results of the aspect-angle dependent experi- 
ments are summarized in Table 2. The average learning 
curves for the this series is shown in Figure 6. The best 
performance of 100% was attained by the network with 
24 hidden units. The two-layered network achieved an 
accuracy of only 79.3% on this training set, 10% lower 
than in the first series of experiments, whereas the per- 
formance of the networks with hidden units remained 
the same. The performance of the two-layered network 
on the test set was also lower in the second set of  ex- 
periments (73.1% compared to 77.1%), while the per- 
formance of the networks with hidden units was as 
much as 5.7% better. 

The variation reported for this experiment was only 
over ten trials differing in the initial conditions. Again, 
the performance on the test set increased with the 
number of hidden units up to 12 units and the variation 
in performance of networks with hidden units decreased 
as the number of hidden units increased. 

The performance of networks with hidden units on 
the test set in the aspect-angle dependent series was 
consistently better then the test set performance of the 
same networks in the aspect-angle independent series. 
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FIGURE 5. Network performance as a function of test set selected randomly for the aspect-angle independent series of experiments. 
Results are shown for networks with 0, 3, 12, and 24 hidden units. The test-set sequence was the same for each hidden unit series. 

The low average performance in the independent series 
can be attributed to particular training/testing set pairs 
for which the performance dropped below 80% (see 
Figure 5). In these instances, important  signal patterns 
appeared in the testing sets but were not represented 
in the training set and were misclassified. If correct 
classification were dependent solely upon general pat- 
terns associated with each class and represented in each 
sample signal, then the variation in performance across 
training/testing set pairs should not be observed. This 
variation indicates that patterns associated with specific 
aspect-angles are also important  for accurate classifi- 
cation. 

Effect of  Hidden Units  on Network Performance 

The significance of the observed increase in network 
performance with the number of hidden units was 
tested by an analysis of variance on the results of the 
aspect-angle dependent test experiments. Using an F 
distribution, we verified that varying the number of  

hidden units did create a difference in test performance, 
F (5, 54) = 32.3, p < .001. Networks with hidden units 
performed better than those without hidden units, F 
(1, 54) = 147.29, p < .001, and it was advantageous to 
use six or more hidden units, F ( 1, 54) = 12.02, p < .01. 
In addition, there was a linear component in the relation 
between performance and the number  of hidden units 
meaning that performance did tend to increase as the 
number of hidden units increased, F ( 1, 54) = 52.7, p 
< .001. Finally, there was also a quadratic component  
indicating that there may be a peak performance as a 
function of the number  of hidden units, F (1, 54) 
= 65.94, p < .001 although this was not observed up 
to an asymptotic limit of 24 hidden units. 

Nearest  Neighbor Classifier 

The probability of correct classification using a 
nearest neighbor rule computed from Equation 4 was 
82.7%. This was as much as 1.7% lower than the per- 
formance of the network classifier with hidden units in 

TABLE 2 
Aspect-Angle Dependent Series 

Average Standard Average Standard 
Performance Deviation Performance Deviation 

Number of on Training Sets on Training Sets on Testing Sets on Testing Sets 
Hidden Units (%) (%) (%) (%) 

0 79.3 3.4 73.1 4.8 
2 96.2 2.2 85.7 6.3 
3 98.1 1.5 87.6 3.0 
6 99.4 0.9 89.3 2.4 

12 99.8 0.6 90.4 1.8 
24 100.0 0.0 89.2 1.4 

Summary of the results of the aspect-angle dependent series of experiments with training and testing sets selected to include all target 
aspect angles. The standard deviation shown is across networks with different initial conditions. 
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FIGURE 6. Network learning curves for the aspect-angle de- 
pendent series of experiments. Each curve represents an av- 
erage of 10 learning trials for a network with the specified num- 
ber of hidden units, 

the aspect-angle independent series. If we assume that 
this result is an accurate estimate of the performance 
of the nearest neighbor classifier in the limit as the 
number of samples increases, the performance of a 
Bayes classifier, given the underlying probability struc- 
ture of the signals, would lie between 82.7% and 91.4% 
(Cover & Hart, 1967). The performance of the network 
classifier with 12 hidden units in the aspect-angle de- 
pendent series was near the top of this range. This sug- 
gests that the performance of the network classifier was 
near optimal. 

W E I G H T  PATTERN ANALYSIS 

Method of Analysis 

In addition to demonstrating the ability of neural 
networks to classify complex signals, we were interested 
in understanding the classification strategy discovered 
by the networks. One way to accomplish this is to in- 
terpret the patterns of weights on connections between 
processing units in trained networks that are matched 
to structure in the signals. We chose a trained network 

with only three hidden units, but with good perfor- 
mance, to simplify the analysis. 

Figure 7 shows the pattern of weights of a network 
with three hidden units trained to classify returns from 
the rock and cylinder. Each hidden unit is represented 
in the figure by a labeled grey region. The area of the 
rectangles within these regions is proportional to the 
absolute value of the weights on connections to other 
units in the network. White and black rectangles rep- 
resent positive and negative weights, respectively. The 
lower set of 60 rectangles represent weights on connec- 
tions from input units. The two upper rectangles in the 
center represent weights to the output units and the 
single rectangle in the upper left represents the weight 
from the true unit or bias to the hidden unit. 

The classification strategy of the network cannot be 
readily understood by visually inspecting weight dis- 
plays. Different signal patterns will interact with the 
weight patterns in different ways, so the signals them- 
selves must also be included in the analysis. In partic- 
ular, it is important to characterize the signals that pro- 
duce the highest activation for each hidden unit. This 
is analogous to the concept of best feature for sensory 
neurons in the nervous system. The first step was to 
analyze each hidden unit independently and then to 
determine how the hidden units interact to achieve ac- 
curate classification. A set of signal patterns was ob- 
tained by clustering the set of sample signals using a 
weighted metric that depended on the weights on con- 
nections from the input units to the hidden unit being 
analyzed. To analyze the ith hidden unit, a weight-state 
vector Q{ik)[i] for each sample signal, k was first com- 
puted 

O{~k)[i] = [w~jP~ k)] (5) 

where p~k)is the output of the j th  input unit when the 
kth signal is clamped to the input. Figure 8 shows a 
graphic representation of the weight-state vector. 

The Euclidean distance between each pair of weight- 
state vectors was computed using Equation 3. A hier- 
archical clustering technique (Johnson, 1967) was then 

it 2 

H i d d e n  U n i t  3 

FIGURE 7. The weight pattern for a trained network with three hidden units. See text for explanation. 
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applied to this distance matrix. Each cluster was a set 
of sonar returns whose weight-state vectors were similar 
to each other. The cluster centroids, computed by av- 
eraging the signal vectors over all members of each 
cluster, comprised a set of distinct patterns which could 
be ordered along the dimension defined by the hidden 
unit response. This dimension was interpreted as a sig- 
nal feature that the hidden unit learned to extract. 

Analysis of a Trained Network 

A network with three hidden units, trained in the 
aspect-angle independent series on 192 sonar returns 
was chosen for analysis. The network's performance on 
the training set and testing set was 100% and 93.7%, 
respectively. Thus, this network was able to correctly 
classify all but one of the total set of 208 returns. 
Twenty-one signal clusters were obtained by analyzing 
the center hidden unit of the network. The weight pat- 
tern of this network is shown in Figure 7. These clusters 
are graphically represented in Figure 9. 

The cluster boundaries were defined such that re- 
turns within each cluster produced a similar hidden 
unit response. The number  of signals per cluster varied 
from 4 to 22. The centroid of  each cluster was computed 
and the activation level response of the hidden unit to 
each centroid was obtained by applying Equation 1. 
The centroids were rank ordered according to the hid- 
den unit activation level from most inhibitory to most 

excitatory, which ranged from -23 .0  to 5.2. Cylinder 
patterns inhibited the unit, while rock patterns excited 
the unit. The response to 9 of the centroids, representing 
50% of the returns, ranged between -3 .0  and -6 .5 .  
This would indicate that the hidden unit responded 
strongly to about half of the input signals. 

Figure 10 shows a sequence of 9 cluster centroids, 
representing 50% of the input signals, which span the 
range of hidden unit activation levels. The variation of 
these patterns as a function of hidden unit activation 
level can be characterized in terms of three signal fea- 
tures. As the overall bandwidth of the pattern decreases, 
the unit's activation level increases. Also, the onset and 
decay characteristics of the signals change as a function 
of activation level. Wide-band signals tend to have a 
gradual overall onset and decay while narrow-band sig- 
nals do not. 

The pattern of weights, shown in Figure 7, are ap- 
propriate for encoding these signal features. The weights 
at the extremes of the input array are sufficiently in- 
hibitory to turn off the hidden unit when wide-band 
signals are clamped to the input. In addition, the al- 
ternating bands of positive and negative weights code 
for rate of  onset and decay. If the onset or decay of the 
pattern is sufficiently gradual, the signal energy spans 
the positive and negative bands, shutting down the units 
response. If  the rate is rapid and the band is positioned 
appropriately, the activation will not be balanced and 
will result in a net positive activation. 
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FIGURE 9. A graphical representation of the clustered sonar returns obtained by applying the weight-state clustering technique to 
the center hidden unit of the network shown in Figure 7. Twenty-one clusters are indicated by "C" (cylinder) or "R" (rock) located 
at the lowest node superior to all returns contained in the cluster. Thus, each return belongs to one and only one cluster. The 
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These signal features represent signal dimensions 
that characterize variations in the input patterns to 
which the hidden unit has been adaptively tuned, al- 
lowing it to successfully classify about 50% of the signals 
presented to it. These features are general in the sense 
that they are aspect-angle independent. This hidden 
unit was also able to classify an additional 20% of the 
input patterns that did not fit this trend. These excep- 
tions were represented by five centroids one of which 
is shown in Figure 11. This display is similar to Figure 
7 except that the area of the inner rectangles are now 
proportional to the weight-state product. The input 
pattern is plotted below the network. This signal appears 
to be a wide-band rock which runs counter to the gen- 
eral description provided above. Yet this signal is cor- 
rectly classified by the center hidden unit as indicated 
by the plot of activation level at the upper-left of the 
unit and the weight-state product values at the ouput. 

The correct classification of such exceptional signals 
is achieved by coding for the precise locations of spectral 
peaks and nulls in the signal by positive and negative 
weights, respectively, between the input units and the 
hidden units. The opposite strategy would apply to 
peaks and nulls of exceptional cylinder returns. The 
location of these peaks could be precisely encoded by 
a few weights suggesting that these features were aspect- 
angle dependent. This is consistent with the fact that 
these clusters represented only 4 to 8 returns. 

The use of such specific pattern information allows 
the hidden units to "memorize"  less frequent patterns. 
By comparison, the general strategy outline above was 
encoded through the use of many weights, character- 
izing the essential features of a wide variety of input 
patterns. This suggests that the network's generalization 

strategy is dependent upon the relative frequency and 
the stability of features in the input pattern. This also 
explains the difference in test-set performance between 
the aspect-angle dependent and aspect-angle indepen- 
dent series of experiments, since 20% of the signals 
were classified correctly on the basis of aspect-angle 
specific information carried by only a few signals. 

The remaining 30% of the signals for which the above 
hidden unit was poorly tuned were handled by the co- 
operative coding of the remaining hidden units. By re- 
peating the above analysis for each hidden unit, it was 
found that the differential response to narrow-band and 
wide-band signals as well as onset and decay charac- 
teristics was a general strategy of all three hidden units. 
The response to narrow-band signals differed among 
the hidden units in that each was tuned to detect a 
narrow-band signal with a different central frequency. 
This strategy made it possible for our registration-sen- 
sitive network to encode a shift-invariant signal feature. 

This behavior can be seen in Figure 12. The three 
displays depict the response of the network to three 
narrow-band signals with different central frequencies. 
In the top display only the center unit responds to the 
input signal. The other two units are inhibited. In the 
center display a signal's band is more central and the 
top unit responds while the other two are inhibited. 
Finally, the bottom display shows a narrow-band signal 
with a high central frequency and only the lower unit 
responds. These hidden units could also capture ex- 
ceptions to this rule using coding schemes outlined 
above. 

The general behavior of each hidden unit could then 
be used to determine the strategy of the network as a 
whole, as illustrated in Figure 13. A cylinder return 
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FIGURE 10. Plots of cluster centroids rank ordered according 
to the hidden unit activation level generated by applying the 
centroid pattern to the input of the trained network. The variation 
in spectral pattern with hidden unit response can be charac- 
terized by bandwidth, onset, and decay features. 

will typically turn off all of the hidden units (Figure 
13a). The default response of the network is determined 
by the biases to the output units. With no activation 
from the hidden layer, the bias drives the output layer 
to code for a cylinder. But a weak response from any 
one of the hidden units is sufficient to flip the states of 
the output layer to code for a rock (Figure 13b). 

C O M P A R I S O N  W I T H  H U M A N  
P E R F O R M A N C E  

In a previous study (Gorman & Sawatari, 1987), 
human subjects were trained to discriminate between 
the same two targets by listening to the same set of 
sonar returns as used in the present study. Each training 
exercise required the subject to listen and respond to 
a set of 100 returns. Single returns were presented in 
random order so that information about the way the 
returns changed with aspect angle could not be used 
to classify the returns. Subjects were immediately told 
whether they had classified a return correctly or incor- 
rectly. The training regimen began with returns that 
were easy to distinguish and gradually included more 
difficult returns as training proceeded. 

The subjects were trained on returns that were het- 
erodyned versions of the original temporal signal. The 
processed FM chirp was 250 ms in duration and swept 
from 500 Hz to 1100 Hz. The spectral envelope used 
as input to the networks was extracted from this pro- 
cessed signal. The total duration of each stimulus was 
400 ms which included the shadow region of the return 
(see Figure 14). Important  classification cues used by 
human listeners were contained in the shadow region 
of some returns. This portion of the return was not 
included in the signal representation used as input to 
the networks. 

The performance of three trained human subjects 
on a given set of 100 returns selected randomly from 
the total set of 208 training samples ranged from 88~ 
to 97% correct. We recently trained one new subject 
on the same training set used to train networks in the 
aspect-angle dependent series. Figure 15 shows the 
training curve for this subject. The best performance 
achieved by the subject was 88%. The subject's perfor- 
mance on the test set used in the aspect-angle dependent 
series was 82%. The performance of networks with 12 
hidden units was better than the performance of human 
listeners trained on the same set of data. 

In the same previous study, the trained human lis- 
teners were tested to determine the perceptual cues used 
to discriminate between the two classes of returns. Ver- 
bal labels for these perceptual features were established 
and described in qualitative terms by the subjects. The 
subjects were asked to rate each return in terms of the 
prominence of each feature which provided a quanti- 
tative measure of the relative strength of features in 
each return. Two of the features identified by subjects 
were labeled "at tack" and "'decay." The attack feature 
was associated with the onset of cylinder returns, and 
decay was associated with the end of rock returns. The 
ratings of sonar returns along the ~attack" perceptual 
dimension provided by subjects correlated well with a 
measure of the area under the low-frequency portion 
of the spectral envelope. The ratings along the "decay" 
dimension correlated well with a linear combination 
of the half-power spectral bandwidth and the area under 
the high-frequency portion of the spectral envelope (see 
Figure 16). 

As discussed in the section on weight pattern anal- 
ysis, the network classifier also extracted features related 
to the bandwidth and the onset and decay characteristics 
of the spectral envelope. If the features used by human 
listeners and the features extracted by the learning net- 
works had a common signal correlate, we would expect 
returns rated by human subjects as having a prominent 
cylinder attack to inhibit hidden units in trained net- 
works. Conversely, we would expect returns rated as 
possessing a strong rock decay to excite or turn on at 
least one hidden unit in trained networks. 

We tested this hypothesis by comparing the human 
perceptual ratings with the responses of hidden units 
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FIGURE 11. The classification of exceptional patterns requires the precise coding of specific spectral peak and null locations in 
the input signal. This wide-band rock return is correctly classified because of the excitatory response to the two peaks flanking 
the central peak. 

inside a trained network. We generated a single scale 
from the average attack and decay ratings of humans 
by normalizing attack ratings to - 1 . 0  for the most 
prominent cylinder attack and 0.0 for the least prom- 
inent and normalizing the decay ratings to 1.0 for the 
most prominent rock decay and 0.0 for the least prom- 
inent. In addition, we used the trained network ana- 
lyzed in the previous section to obtain comparable net- 
work ratings for the same set of returns. The measure 
chosen to serve as a network rating was the output of 
the hidden units. For a given return, the hidden unit 
with the largest absolute activation level provided the 
rating. This allowed the hidden unit best tuned to the 
input to rate the return. 

A product-moment  correlation coefficient was com- 
puted between these normalized subject ratings and 
the activation levels of the appropriate hidden unit. The 
coefficient obtained across 100 returns was 0.84. The 
high correlation between these measures suggests that 
the network discovered features in the sonar returns 
that were similar to features used by trained human 
listeners. 

D I S C U S S I O N  

Neural networks have been trained to identify two 
undersea targets, a metal cylinder and a similarly shaped 
rock, on the basis of  single sonar returns. Two series of 
experiments were conducted. For the aspect-angle in- 

dependent series, training and testing sets were selected 
at random, and for the aspect-angle dependent exper- 
iment, these returns were selected to ensure that all 
target aspect angles in the total set of sonar returns 
were represented in both the training and testing sets. 
In both experiments the networks with hidden units 
could be trained to achieve a high degree of classifi- 
cation accuracy. 

Classification Experiments 

The results of the network classification experiments, 
as well as the analysis of variance, demonstrate that the 
hidden layer contributed signficantly to the perfor- 
mance of the network classifie~: This supports previous 
findings on the importance of the hidden layer for dif- 
ficult signal classification and signal processing prob- 
lems (Lapedes & Farber, 1987; Lehky & Sejnowski, 
1987; Rosenberg & Sejnowski, 1987: Sejnowski, 
Kienker, & Hinton, 1986). The analysis of  variance 
indicated that a peak performance might be attained 
as the number of hidden units increased. 

The best performance of the network classifiers with 
hidden units was better than a nearest neighbor classifier 
and performance in the aspect-angle dependent series 
was close to the Bayes classifier, which is an op- 
timal decision rule for maximizing the probability of  
correct classification. The performance of the networks 
with hidden units in the aspect-angle dependent series 
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FIGURE 12. The response of hidden units to narrow-band input patterns. Each grey bar represents a hidden unit and the area of 
the rectangles within are proportional to the weight-state product of each input unit. White rectangles are excitatory and black 
rectangles are inhibitory. The sigmoids at the left of each hidden unit show the output state of the hidden unit as a function of the 
activation level. As indicated, hidden units respond preferentially to narrow-band patterns with different central frequencies. 

was as much as 5.7% better than in the aspect-angle 
independent series. This indicates that aspect-angle de- 
pendent signal features contributed to the test perfor- 
mance of  the network classifiers. 

The variation in performance due to initial condi- 

tions was moderate for networks with few or no hidden 
units, and decreased with increasing numbers of  hidden 
units. This suggests that networks with larger hidden 
layers tend to be less sensitive to initial conditions. The 
variance on the test set shown in Table 1 is higher then 
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FIGURE 13. (a) The general strategy of the trained network is to default to a cylinder using the input from the bias unit, (b) only 
weak responses of hidden units are required to code for rock returns. 

the variation shown in Table 2 because the variation 
in performance in the first experiment included an ad- 
ditional factor due to the choice of training and testing 
examples. 

Weight Pattern Analysis 

The analysis of the weight patterns contributed sig- 
nificantly to our understanding of the network classifier. 
Specific signal features extracted by hidden units in a 

trained network were identified and related to coding 
schemes in the pattern of input weights. Previous at- 
tempts at analyzing weight patterns were aided either 
by input patterns whose structure could be easily in- 
terpreted visually (Lehky & Sejnowski, 1987; Sejnowski 
et al., 1986), symbolic input patterns whose primitives 
were given a priori (Rosenberg & Sejnowski, 1987), or 
a complete mathematical description of the input data 
(Lapedes & Farber, 1987). For signal-based recognition 
applications, such information about the underlying 
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FIGURE 14. The temporal and spectrographic displays of a typical cylinder return. The "shadow region" marked in the display 
contained important classification cues used by human listeners. This portion of the return was not presented to the networks. 

structure of the input data is not generally available. 
For these applications the weight-state clustering tech- 
nique could aid in the interpretation of the network 
weight patterns. 

The overall network strategy was to default to a cyl- 
inder response, and to detect the presence of a rock 
return at the input. Once the response characteristics 
of each hidden unit were understood, the conditions 
underlying this general strategy became apparent. One 
of the aspect-angle independent features of rock returns 
was a narrow-band input pattern. This was a shift-in- 
variant feature since the central frequency of the band 
could vary. However, a single hidden unit could detect 
this feature only for a limited range of central frequen- 
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FIGURE 15. The training curve of a human listener trained to 
distinguish the two sonar targets on the basis of the same set 
of returns used to train the networks in the aspect-angle de- 
pendent series of experiments. Each trial consisted of 104 re- 
turns presented in a random sequence. 

cies. Thus, multiple hidden units responding to different 
ranges of central frequencies were required to encode 
this feature reliably. The broad-band pattern of the cyl- 
inder return, on the other hand, could be rejected with 
the same coding scheme by each hidden unit. The cyl- 
inder could thus serve as a default even though there 
was a wide range of variability among returns from the 
cylinder. 

It was also found that, in addition to the general 
aspect-angle independent classification strategy, an as- 
pect-angle dependent strategy was adopted in order to 
correctly classify less frequent signals that did not con- 
form to the general model of a cylinder or rock return. 
This was accomplished by using a small number of 
weights to encode specific spectral peaks and nulls. 

Although it is attractive to think of a hidden unit as 
a feature extractor, this may not be the best way to 
characterize a hidden unit's coding strategy. As we 
demonstrated, the hidden unit is capable of encoding 
multiple features and even multiple strategies simul- 
taneously. This kind of pattern coding makes efficient 
use of the capacity of each hidden unit and is more 
suggestive of a model-based approach rather than sim- 
ple feature extraction. The network is able to internally 
encode pattern variations that do not decompose simply 
into a set of feature dimensions. An important step 
toward understanding neural networks will be the de- 
velopment of an appropriate formalism for describing 
this coding strategy. 

Comparison with Human Performance 

The performance of human listeners on the same 
set of data was comparable to the network classifier. 
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FIGURE 16. The spectral envelope of a typical sonar return. The signal features which correlated well with human perceptual cues 
are indicated. 

Although it is difficult to make a direct comparison,  
due to the use of different signal representations, the 
high correlation between h u m a n  perceptual ratings and 

network's  hidden uni t  responses to the same set of sig- 
nals suggests that a similar internal  representation may 
underlie their comparable  performance. 

Although this is a l imited study in many  respects, 
the results suggest that network classifiers should pro- 
vide a viable alternative to existing machine-based 
techniques. The performance of the network classifiers 

is better than a nearest neighbor classifier and less ex- 
pensive in terms of storage and computat ion.  In ad- 
dition, the networks are able to achieve near optimal 
performance without requir ing a priori knowledge or 

assumptions  about  the underlying statistical structure 
of the signals to be classified. Finally and perhaps most 
importantly,  the network's  performance and classifi- 
cation strategy appear to be comparable  to that of hu- 
mans. 
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